Dimension of random fractals in metric spaces
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 3, pp. 589-616
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the local and Hausdorff dimensions of measures in function and sequence spaces and the Hausdorff dimension of such spaces with respect to deterministic and random ‘`scale metrics.’ Following ideas due to Billingsley and Furstenberg we show that the local dimension of a properly chosen probability measure is an efficient tool for the calculation of the Hausdorff dimension. In particular, the calculation of the Hausdorff dimension of a sequence space with respect to a deterministic scale metric with finite memory is reduced to the calculation of the local dimension of the associated Markov chain that can be found easily; both dimensions coincide with the solution of the generalized Moran equation specified by the scale metric. When the scale metric is random we come to a stochastic analogue of the Moran equation. These results are used as a ‘`leading special case’ in the study of the Hausdorff dimension of deterministic and random fractals in general metric spaces.
Mots-clés :
Hausdorff dimension, local dimension, Markov chain, fractal.
Keywords: Hausdorff measure
Keywords: Hausdorff measure
@article{TVP_1999_44_3_a5,
author = {A. A. Tempel'man},
title = {Dimension of random fractals in metric spaces},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {589--616},
publisher = {mathdoc},
volume = {44},
number = {3},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a5/}
}
A. A. Tempel'man. Dimension of random fractals in metric spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 3, pp. 589-616. http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a5/