A local limit theorem for random strict partitions
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 3, pp. 506-525 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a set of partitions of natural number $n$ on distinct summands with uniform distribution. We investigate the limit shape of the typical partition as $n\to\infty$, which was found in [A. M. Vershik, Funct. Anal. Appl., 30 (1996), pp. 90–105], and fluctuations of partitions near its limit shape. The geometrical language we use allows us to reformulate the problem in terms of random step functions (Young diagrams). We prove statements of local limit theorem type which imply that joint distribution of fluctuations in a number of points is locally asymptotically normal. The proof essentially uses the notion of a large canonical ensemble of partitions.
Mots-clés : partition, large ensemble of partitions
Keywords: Young diagram, local limit theorem.
@article{TVP_1999_44_3_a1,
     author = {A. M. Vershik and G. A. Freiman and Yu. V. Yakubovich},
     title = {A local limit theorem for random strict partitions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {506--525},
     year = {1999},
     volume = {44},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - G. A. Freiman
AU  - Yu. V. Yakubovich
TI  - A local limit theorem for random strict partitions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 506
EP  - 525
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a1/
LA  - ru
ID  - TVP_1999_44_3_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%A G. A. Freiman
%A Yu. V. Yakubovich
%T A local limit theorem for random strict partitions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 506-525
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a1/
%G ru
%F TVP_1999_44_3_a1
A. M. Vershik; G. A. Freiman; Yu. V. Yakubovich. A local limit theorem for random strict partitions. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 3, pp. 506-525. http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a1/