Maslov idempotent probability calculus. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 384-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of Bellman–Maslov processes has lead to new advances in the understanding of optimal control problems and of its relation to the study of Hamilton–Jacobi differential equations. The aim of this work is to show that idempotent calculus yields a natural and general probabilistic line of thought for studying such equations. Some new results relating to the long-time behavior of the solution of a class of Hamilton–Jacobi differential equations can be regarded as a $(\max,+)$-version of the law of large numbers and the central limit theorem. The applications to some evolution equation arising in mathematical morphology are also discussed.
Keywords: Bellman–Maslov processes, Hamilton–Jacobi equations, idempotent calculus, mathematical morphology.
@article{TVP_1999_44_2_a7,
     author = {P. Del Moral and M. Doisy},
     title = {Maslov idempotent probability {calculus.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {384--400},
     year = {1999},
     volume = {44},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a7/}
}
TY  - JOUR
AU  - P. Del Moral
AU  - M. Doisy
TI  - Maslov idempotent probability calculus. II
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 384
EP  - 400
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a7/
LA  - en
ID  - TVP_1999_44_2_a7
ER  - 
%0 Journal Article
%A P. Del Moral
%A M. Doisy
%T Maslov idempotent probability calculus. II
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 384-400
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a7/
%G en
%F TVP_1999_44_2_a7
P. Del Moral; M. Doisy. Maslov idempotent probability calculus. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 384-400. http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a7/