On almost sure limit theorems
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 328-350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By a sequence of random vectors $\{\zeta_k\}$, we can construct empirical distributions of the type $ Q_n = (\log n)^{-1} \sum_{k=1}^n \delta_{\zeta_k}/k$. Statements on the convergence of these or similar distributions with probability 1 to a limit distribution are called almost sure theorems. We propose several methods which permit us to easily deduce the almost sure limit theorems from the classical limit theorems, prove the invariance principle of the type “almost sure” and investigate the convergence of generalized moments. Unlike the majority of the preceding papers, where only convergence to the normal law is considered, our results may be applied in the case of limit distributions of the general type.
Keywords: limit theorems, convergence almost sure, sums of independent variables, weak dependence, invariance principle.
@article{TVP_1999_44_2_a4,
     author = {I. A. Ibragimov and M. A. Lifshits},
     title = {On almost sure limit theorems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {328--350},
     year = {1999},
     volume = {44},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a4/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - M. A. Lifshits
TI  - On almost sure limit theorems
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 328
EP  - 350
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a4/
LA  - ru
ID  - TVP_1999_44_2_a4
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A M. A. Lifshits
%T On almost sure limit theorems
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 328-350
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a4/
%G ru
%F TVP_1999_44_2_a4
I. A. Ibragimov; M. A. Lifshits. On almost sure limit theorems. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 328-350. http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a4/