Asymptotic expansion of the distribution of a homogeneous functional of a strictly stable random vector. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 458-465
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $u$ be a strictly stable non-Gaussian vector with the exponent of stability $\alpha\ge 1$, taking on values in a separable Banach space $B$. Let $h\colon B\to\mathbb R$ be a smooth homogeneous functional and let $F$ be the distribution function of the random variable $h(u)$. For the function $1-F(x)$ we obtain an asymptotic expansion of the form $\sum_{k=1}^n c_kx^{-k\alpha}+O(x^{-(n+1)\alpha})$, $x\to\infty$ ($n$ is determined by the smoothness of $h$). To establish the expansion we use a new approach which is based on the decomposition of the distribution into the sum of linear functionals.
Keywords:
strictly stable distribution, spectral measure, Poisson random measure, linear functional in a Banach space, stochastic integral.
Mots-clés : space of configurations
Mots-clés : space of configurations
@article{TVP_1999_44_2_a15,
author = {N. V. Smorodina},
title = {Asymptotic expansion of the distribution of a homogeneous functional of a strictly stable random {vector.~II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {458--465},
year = {1999},
volume = {44},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a15/}
}
TY - JOUR AU - N. V. Smorodina TI - Asymptotic expansion of the distribution of a homogeneous functional of a strictly stable random vector. II JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1999 SP - 458 EP - 465 VL - 44 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a15/ LA - ru ID - TVP_1999_44_2_a15 ER -
N. V. Smorodina. Asymptotic expansion of the distribution of a homogeneous functional of a strictly stable random vector. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 458-465. http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a15/