On the integrability of a maximal square function in ergodic theory
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 432-440 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions are established for $L^2$-summability of the maximal square function of general unitary operators. Extensions of the result to arbitrary contractions in $L^2$, multiparameter unitary groups, and power-bounded operators in $L^p$, $p>1$, are considered as well.
Keywords: unitary operators, contractive operators, homogeneous random fields, power-bounded operators, individual ergodic theorem, maximal square function.
@article{TVP_1999_44_2_a10,
     author = {V. F. Gaposhkin},
     title = {On the integrability of a maximal square function in ergodic theory},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {432--440},
     year = {1999},
     volume = {44},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a10/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - On the integrability of a maximal square function in ergodic theory
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 432
EP  - 440
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a10/
LA  - ru
ID  - TVP_1999_44_2_a10
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T On the integrability of a maximal square function in ergodic theory
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 432-440
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a10/
%G ru
%F TVP_1999_44_2_a10
V. F. Gaposhkin. On the integrability of a maximal square function in ergodic theory. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 432-440. http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a10/