Estimates for overshooting an arbitrary boundary by a random walk and their applications
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 249-277
Cet article a éte moissonné depuis la source Math-Net.Ru
Estimates are found for the magnitude of overshoot, by a sequence of random variables, over an arbitrary boundary. If the sequence increments satisfy a so-called condition of asymptotic homogeneity and the boundary is asymptotically “smooth” then the occurrence of the weak convergence to a limit shape (as the boundary is sent away) is established for the distribution of the overshoot value. As an application, we obtain a uniform (over the class of distributions) basic renewal theorem and determine the asymptotics of the average time of crossing a curvilinear border by the trajectories of asymptotically homogeneous Markov chains.
Keywords:
sequence of random variables, random walk, time and value of the first overshoot, uniform integrability, nonlinear boundary, asymptotic homogeneity.
Mots-clés : Markov chain
Mots-clés : Markov chain
@article{TVP_1999_44_2_a1,
author = {A. A. Borovkov and S. G. Foss},
title = {Estimates for overshooting an arbitrary boundary by a random walk and their applications},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {249--277},
year = {1999},
volume = {44},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a1/}
}
TY - JOUR AU - A. A. Borovkov AU - S. G. Foss TI - Estimates for overshooting an arbitrary boundary by a random walk and their applications JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1999 SP - 249 EP - 277 VL - 44 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a1/ LA - ru ID - TVP_1999_44_2_a1 ER -
A. A. Borovkov; S. G. Foss. Estimates for overshooting an arbitrary boundary by a random walk and their applications. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 249-277. http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a1/