On the maximum of a fractional Brownian motion
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 111-115

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $b_{\gamma}(t)$, $b_{\gamma}(0)=0$ be a fractional Brownian motion, i.e., a Gaussian process with the structural function $\mathbf{E}|b_{\gamma}(t)-b_{\gamma}(s)|^2=|t-s|^\gamma$, $0 \gamma 2$. The logarithmic asymptotics as $T\to\infty$ is found for the probabilities $P_T=\mathsf{P}\{b_{\gamma}(t)1,\ -\rho T0\}$ this asymptotics is independent of $\gamma$.
Keywords: extreme values, Gaussian processes, fractional Brownian motion, automodel processes.
@article{TVP_1999_44_1_a7,
     author = {G. M. Molchan},
     title = {On the maximum of a fractional {Brownian} motion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {111--115},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a7/}
}
TY  - JOUR
AU  - G. M. Molchan
TI  - On the maximum of a fractional Brownian motion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 111
EP  - 115
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a7/
LA  - ru
ID  - TVP_1999_44_1_a7
ER  - 
%0 Journal Article
%A G. M. Molchan
%T On the maximum of a fractional Brownian motion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 111-115
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a7/
%G ru
%F TVP_1999_44_1_a7
G. M. Molchan. On the maximum of a fractional Brownian motion. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 111-115. http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a7/