On martingale measures for stochastic processes with independent increments
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 87-100

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a special semimartingale $X$ with independent increments and prove the existence and equivalence of a local martingale measure $\mathbf{P}^H$ for $X$, which minimizes the Hellinger process under the assumption that there exists an equivalent local martingale measure for $X$. This is done under the restriction of quasi-left-continuity and boundedness of jumps of $X$. Furthermore, we investigate the relation between the well-known minimal martingale measure $\mathbf{P}^{\min}$ and $\mathbf{P}^H$. It is shown that in a sense $\mathbf{P}^{\min}$ is an approximation of $\mathbf{P}^H$.
Keywords: processes with independent increments, equivalent local martingale measure, minimal martingale measure, Hellinger process.
@article{TVP_1999_44_1_a5,
     author = {P. Grandits},
     title = {On martingale measures for stochastic processes with independent increments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a5/}
}
TY  - JOUR
AU  - P. Grandits
TI  - On martingale measures for stochastic processes with independent increments
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 87
EP  - 100
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a5/
LA  - en
ID  - TVP_1999_44_1_a5
ER  - 
%0 Journal Article
%A P. Grandits
%T On martingale measures for stochastic processes with independent increments
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 87-100
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a5/
%G en
%F TVP_1999_44_1_a5
P. Grandits. On martingale measures for stochastic processes with independent increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 87-100. http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a5/