Necessary conditions for stable convergence of semimartingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 229-232

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an inverse to a theorem on stable convergence of semimartingales due to Feigin [Stochastic Process. Appl., 19 (1985), pp. 125–134]. As a consequence, it can be stated (under some control in the jumps) that a sequence of martingales $X^n$ converges stably to a continuous martingale $X$ with conditionally independent increments if and onlyif the quadratic variations of $X^n$ converge in probability to the quadratic variation of $X$ for each $t \in\mathbf{R}^+$.
Keywords: semimartingale, independent increments.
Mots-clés : stable convergence
@article{TVP_1999_44_1_a20,
     author = {E. Mordecki},
     title = {Necessary conditions for stable convergence of semimartingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {229--232},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a20/}
}
TY  - JOUR
AU  - E. Mordecki
TI  - Necessary conditions for stable convergence of semimartingales
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 229
EP  - 232
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a20/
LA  - en
ID  - TVP_1999_44_1_a20
ER  - 
%0 Journal Article
%A E. Mordecki
%T Necessary conditions for stable convergence of semimartingales
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 229-232
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a20/
%G en
%F TVP_1999_44_1_a20
E. Mordecki. Necessary conditions for stable convergence of semimartingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 229-232. http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a20/