An example of large deviations for a stationary process
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 211-225
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We give an example of large deviations for a family $(X_t^\varepsilon)_{t\ge 0}$, $\varepsilon >0$, with $\dot{X}_t^\varepsilon=a(X_t^\varepsilon)+b(X_t^\varepsilon) \eta_{t/\varepsilon}$, where $\eta_t$ is a stationary process obeying the Wold decomposition: $\eta_t=\int_{-\infty}^th(t-s)\,dN_s$ with respect to a homogeneous process $N_t$ with independent square integrable increments.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
large deviation, Skorokhod space, Wold decomposition.
                    
                    
                    
                  
                
                
                @article{TVP_1999_44_1_a18,
     author = {O. V. Gulinsky and R. Sh. Liptser},
     title = {An example of large deviations for a stationary process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {211--225},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a18/}
}
                      
                      
                    O. V. Gulinsky; R. Sh. Liptser. An example of large deviations for a stationary process. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 211-225. http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a18/
