An example of large deviations for a stationary process
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 211-225

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an example of large deviations for a family $(X_t^\varepsilon)_{t\ge 0}$, $\varepsilon >0$, with $\dot{X}_t^\varepsilon=a(X_t^\varepsilon)+b(X_t^\varepsilon) \eta_{t/\varepsilon}$, where $\eta_t$ is a stationary process obeying the Wold decomposition: $\eta_t=\int_{-\infty}^th(t-s)\,dN_s$ with respect to a homogeneous process $N_t$ with independent square integrable increments.
Keywords: large deviation, Skorokhod space, Wold decomposition.
@article{TVP_1999_44_1_a18,
     author = {O. V. Gulinsky and R. Sh. Liptser},
     title = {An example of large deviations for a stationary process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {211--225},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a18/}
}
TY  - JOUR
AU  - O. V. Gulinsky
AU  - R. Sh. Liptser
TI  - An example of large deviations for a stationary process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 211
EP  - 225
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a18/
LA  - en
ID  - TVP_1999_44_1_a18
ER  - 
%0 Journal Article
%A O. V. Gulinsky
%A R. Sh. Liptser
%T An example of large deviations for a stationary process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 211-225
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a18/
%G en
%F TVP_1999_44_1_a18
O. V. Gulinsky; R. Sh. Liptser. An example of large deviations for a stationary process. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 211-225. http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a18/