The class $I_0$ for random increasing upper semicontinuous functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 148-151

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be the convex cone $USC_*([0,1],\mathbf{R}_+)$ of increasing upper semicontinuous functions $g\colon[0,1]\to\mathbf{R}_+$. It is shown that the class $I_0(C)$ of distributions on $C$ without indecomposable factor is strictly included in the class of infinitely divisible distributions on $C$.
Keywords: probability measures without indecomposable factor, upper semicontinuous function, infinitely divisible distributions.
@article{TVP_1999_44_1_a15,
     author = {D. Neuenschwander},
     title = {The class $I_0$ for random increasing upper semicontinuous functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {148--151},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a15/}
}
TY  - JOUR
AU  - D. Neuenschwander
TI  - The class $I_0$ for random increasing upper semicontinuous functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 148
EP  - 151
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a15/
LA  - en
ID  - TVP_1999_44_1_a15
ER  - 
%0 Journal Article
%A D. Neuenschwander
%T The class $I_0$ for random increasing upper semicontinuous functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 148-151
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a15/
%G en
%F TVP_1999_44_1_a15
D. Neuenschwander. The class $I_0$ for random increasing upper semicontinuous functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 148-151. http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a15/