Asymptotically dominating estimation of expectation value vectors
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 132-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of quadratic risk minimization is solved for the componentwise shrinkage estimation of expectation value vectors for normal vectors with independent components and unit variance. An unimprovable shrinkage function is found, and a shrinkage estimator of the expectation value vector is constructed unimprovable with accuracy to terms that are small for large dimension and large sample size.
Keywords: shrinkage estimator, dominating estimators
Mots-clés : large dimension.
@article{TVP_1999_44_1_a12,
     author = {V. I. Serdobol'skii},
     title = {Asymptotically dominating estimation of expectation value vectors},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {132--138},
     year = {1999},
     volume = {44},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a12/}
}
TY  - JOUR
AU  - V. I. Serdobol'skii
TI  - Asymptotically dominating estimation of expectation value vectors
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 132
EP  - 138
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a12/
LA  - ru
ID  - TVP_1999_44_1_a12
ER  - 
%0 Journal Article
%A V. I. Serdobol'skii
%T Asymptotically dominating estimation of expectation value vectors
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 132-138
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a12/
%G ru
%F TVP_1999_44_1_a12
V. I. Serdobol'skii. Asymptotically dominating estimation of expectation value vectors. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 132-138. http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a12/