On probability characteristics of ``downfalls'' in a standard Brownian motion
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

For a Brownian motion $B=(B_t)_{t\le 1}$ with $B_0=0$, $\mathbf{E}B_t=0$, $\mathbf{E}B_t^2=t$ problems of probability distributions and their characteristics are considered for the variables \begin{align*} \mathbb D=\sup_{0\le t\le t'\le1}(B_t-B_{t'}), \qquad \mathbb D_1=B_{\sigma}-\inf_{\sigma\le t'\le1}B_{t'}, \\ \mathbb D_2=\sup_{0\le t\le \sigma'}B_t-B_{\sigma'}, \end{align*} where $\sigma$ and $\sigma'$ are times (non-Markov) of the absolute maximum and absolute minimum of the Brownian motion on $[0,1]$ (i.e., $B_\sigma=\sup_{0\le t\le 1}B_t$, $B_{\sigma'}=\inf_{0\le t'\le 1}B_{t'}$).
Keywords: Brownian motion, “downfalls” and “range”, Lévy theorem, Brownian meander.
@article{TVP_1999_44_1_a0,
     author = {R. Douady and M. Yor and A. N. Shiryaev},
     title = {On probability characteristics of ``downfalls'' in a standard {Brownian} motion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a0/}
}
TY  - JOUR
AU  - R. Douady
AU  - M. Yor
AU  - A. N. Shiryaev
TI  - On probability characteristics of ``downfalls'' in a standard Brownian motion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 3
EP  - 13
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a0/
LA  - ru
ID  - TVP_1999_44_1_a0
ER  - 
%0 Journal Article
%A R. Douady
%A M. Yor
%A A. N. Shiryaev
%T On probability characteristics of ``downfalls'' in a standard Brownian motion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 3-13
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a0/
%G ru
%F TVP_1999_44_1_a0
R. Douady; M. Yor; A. N. Shiryaev. On probability characteristics of ``downfalls'' in a standard Brownian motion. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a0/