On small perturbations of stable Markov operators: unbounded case
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 752-764

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of estimating the bounds for generic expressions of the type $\mathbb{E}[\varphi(\gamma,X_1)\cdots\varphi(\gamma,X_{n})]$, where $(X_i)$ is a not necessarily bounded Markov process, $\varphi$ is a smooth function, and $\gamma$ is a small parameter. We show that when the chain $(X_i)$ is exponentially ergodic, some tight bounds can be obtained by small perturbation of the transition operator of the chain. The result is then applied to prove exponential convergence of matrix products and exponential inequalities for Markov chains.
Keywords: random variables products, exponential inequalities for Markov chains.
@article{TVP_1998_43_4_a6,
     author = {B. Delyon and A. Juditsky},
     title = {On small perturbations of stable {Markov} operators: unbounded case},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {752--764},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a6/}
}
TY  - JOUR
AU  - B. Delyon
AU  - A. Juditsky
TI  - On small perturbations of stable Markov operators: unbounded case
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1998
SP  - 752
EP  - 764
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a6/
LA  - en
ID  - TVP_1998_43_4_a6
ER  - 
%0 Journal Article
%A B. Delyon
%A A. Juditsky
%T On small perturbations of stable Markov operators: unbounded case
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1998
%P 752-764
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a6/
%G en
%F TVP_1998_43_4_a6
B. Delyon; A. Juditsky. On small perturbations of stable Markov operators: unbounded case. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 752-764. http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a6/