Localization vs. delocalization of random discrete measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 711-734 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sequences of discrete measures $\mu^{(n)}$ with random atoms $\{\mu_i^{(n)}$, $i=1,2,\ldots\}$ such that $\sum_{i}\mu_i^{(n)}=1$ are considered. The notions of (complete) asymptotic localization vs. delocalization of such measures in the weak (mean or probability) and strong (with probability $1$) sense are proposed and analyzed, proceeding from the standpoint of the largest atoms' behavior as $n\to\infty$. In this framework, the class of measures with the atoms of the form $\mu_i^{(n)}=X_i/S_n$ ($i=1,\ldots,n$) is studied, where $X_1,X_2,\ldots$ is a sequence of positive, independent, identically distributed random variables (with a common distribution function $F$) and $S_n=X_1+\cdots +X_n$. If $\mathbb{E} [X_1] < \infty$, then the law of large numbers implies that $\mu^{(n)}$ is strongly delocalized. The case where $\mathbb{E} [X_1]=\infty$ is studied under the standard assumption that $F$ has a regularly varying upper tail (with exponent $0\le\alpha\le 1$). It is shown that for $\alpha < 1$, weak localization occurs. In the critical point $\alpha =1$, the weak delocalization is established. For $\alpha =0$, localization is strong unless the tail decay is “hardly slow”.
Keywords: random measures, localization, delocalization, extreme terms, order statistics, law of large numbers, regular variation.
@article{TVP_1998_43_4_a4,
     author = {S. Albeverio and L. V. Bogachev},
     title = {Localization vs. delocalization of random discrete measures},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {711--734},
     year = {1998},
     volume = {43},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a4/}
}
TY  - JOUR
AU  - S. Albeverio
AU  - L. V. Bogachev
TI  - Localization vs. delocalization of random discrete measures
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1998
SP  - 711
EP  - 734
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a4/
LA  - en
ID  - TVP_1998_43_4_a4
ER  - 
%0 Journal Article
%A S. Albeverio
%A L. V. Bogachev
%T Localization vs. delocalization of random discrete measures
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1998
%P 711-734
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a4/
%G en
%F TVP_1998_43_4_a4
S. Albeverio; L. V. Bogachev. Localization vs. delocalization of random discrete measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 711-734. http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a4/