Some bounds on~the~rate of~convergence in~the~CLT for martingales.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 692-710
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper concerns rates of convergence in the central limit theorem (CLT) for the random variables $S_{n}=\sum_{1}^{n}X_{m}$, where $X_{m}$ are martingale-differences. It is known that in the general case one cannot hope for a rate better than $O(n^{-1/8})$ even if the third moments are finite. If the conditional variances satisfy $\mathsf{E}\{X_{m}^2\mid X_{1}\ldots X_{m-1}\}=\mathsf{E}X_{m}^2$, the rate in general is no better than $O(n^{-1/4}),$ while in the independency case it is of the order $O(n^{-1/2})$. This paper contains a bound which covers simultaneously the cases mentioned as well as some intermediate cases. The bound is presented in terms of some dependency characteristics reflecting the influence of different factors on the rate.
Keywords:
central limit theorem, rate of convergence.
Mots-clés : martingales
Mots-clés : martingales
@article{TVP_1998_43_4_a3,
author = {Y. Rinott and V. I. Rotar'},
title = {Some bounds on~the~rate of~convergence {in~the~CLT} for {martingales.~I}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {692--710},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a3/}
}
TY - JOUR AU - Y. Rinott AU - V. I. Rotar' TI - Some bounds on~the~rate of~convergence in~the~CLT for martingales.~I JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1998 SP - 692 EP - 710 VL - 43 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a3/ LA - ru ID - TVP_1998_43_4_a3 ER -
Y. Rinott; V. I. Rotar'. Some bounds on~the~rate of~convergence in~the~CLT for martingales.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 692-710. http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a3/