On the~smoothness and~singularity of~invariant measures and~transition probabilities of~infinite-dimensional diffusions
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 798-808

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct two examples of nondegenerate diffusion specified by the stochastic differential equation $$ d\xi_t=\sigma (\xi_t)\,dW_t + B(\xi_t)\,dt $$ in a Hilbert space $X$, where $\sigma (x)=I+\sigma_0(x)$ and $B(x)=\Lambda x+v(x)$; here $\Lambda$ is a continuous linear operator on $X$ and $\sigma_0$ and $v$ are infinitely Fréchet differentiable mappings with values in the spaces of nuclear operators on $X$ and in $X$, respectively, derivatives of any order of which are bounded. These diffusions possess the following properties: (i) In the first example, $\Lambda x =-\frac12 x$ and $\xi_t$ has a (unique) invariant measure which, the same as its transition probabilities, has no directions along which it is differentiable (and even continuous); (ii) in the second example, $\xi_t$ has two different invariant probability measures $\nu_1$ and $\nu_2$ such that $\nu_1$ is equivalent to a Gaussian measure and is differentiable, whereas $\nu_2$ has no directions along which it is nonsingular (or even continuous). In addition, for any $\varepsilon >0$ one can select $\sigma_0$ and $v$ in such a way that they vanish out of the $\varepsilon$-ball and have norms not exceeding $\varepsilon$ (in the spaces of nuclear operators on $X$ and in $X$, respectively).
Keywords: infinite-dimensional space, transition probabilities, invariant measure, smoothness and singularity of measures, exceptional set, Hilbert space.
Mots-clés : diffusion
@article{TVP_1998_43_4_a13,
     author = {N. A. Tolmachev},
     title = {On the~smoothness and~singularity of~invariant measures and~transition probabilities of~infinite-dimensional diffusions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {798--808},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a13/}
}
TY  - JOUR
AU  - N. A. Tolmachev
TI  - On the~smoothness and~singularity of~invariant measures and~transition probabilities of~infinite-dimensional diffusions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1998
SP  - 798
EP  - 808
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a13/
LA  - ru
ID  - TVP_1998_43_4_a13
ER  - 
%0 Journal Article
%A N. A. Tolmachev
%T On the~smoothness and~singularity of~invariant measures and~transition probabilities of~infinite-dimensional diffusions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1998
%P 798-808
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a13/
%G ru
%F TVP_1998_43_4_a13
N. A. Tolmachev. On the~smoothness and~singularity of~invariant measures and~transition probabilities of~infinite-dimensional diffusions. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 798-808. http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a13/