On topological properties of the Skorokhod space
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 781-786
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We establish that, for a co-analytic set $X$ in a Polish space $E$, the Skorokhod space $D_1(X)$ is also co-analytic in the Polish space $D_1(E)$. At the same time, for a Suslin set $X \subset E$, $D_1(X)$ need not even be universally measurable in $D_1(E)$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Skorokhod space, Skorokhod topology, Polish space, Suslin (analytic) set, projective class, universally measurable set, space of closed subsets of a topological space.
                    
                  
                
                
                @article{TVP_1998_43_4_a10,
     author = {A. V. Kolesnikov},
     title = {On topological properties of the {Skorokhod} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {781--786},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a10/}
}
                      
                      
                    A. V. Kolesnikov. On topological properties of the Skorokhod space. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 781-786. http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a10/
