On topological properties of the Skorokhod space
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 781-786
Cet article a éte moissonné depuis la source Math-Net.Ru
We establish that, for a co-analytic set $X$ in a Polish space $E$, the Skorokhod space $D_1(X)$ is also co-analytic in the Polish space $D_1(E)$. At the same time, for a Suslin set $X \subset E$, $D_1(X)$ need not even be universally measurable in $D_1(E)$.
Keywords:
Skorokhod space, Skorokhod topology, Polish space, Suslin (analytic) set, projective class, universally measurable set, space of closed subsets of a topological space.
@article{TVP_1998_43_4_a10,
author = {A. V. Kolesnikov},
title = {On topological properties of the {Skorokhod} space},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {781--786},
year = {1998},
volume = {43},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a10/}
}
A. V. Kolesnikov. On topological properties of the Skorokhod space. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 781-786. http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a10/