Spatial branching populations with long individual lifetimes
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 655-671
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for critical branching particle systems in $\mathbb{R}^{d}$ with symmetric $\alpha$-stable individual motion, $(1+\beta)$-stable branching, and individual lifetime distribution with a tail of exponent $\gamma \le 1$, the system initiated by a Poisson field of particles in $\\mathbb{R}^d$ dies out locally if $d {\alpha \gamma }/\beta$, converges to a Poisson limit of full intensity if $d > {\alpha \gamma }/\beta $, and converges to a nontrivial limit along a subsequence as $d={ \alpha \gamma }/\beta $. Moreover, for a general nonarithmetic lifetime distribution with finite expectation, it is shown that, as $t\rightarrow \infty $, the system converges to a nontrivial limit of full intensity if $ d > \alpha /\beta $ and goes to local extinction otherwise.
Mots-clés :
extinction, persistence, stable distributions
Keywords: survival, regularly varying functions, renewal equations.
Keywords: survival, regularly varying functions, renewal equations.
@article{TVP_1998_43_4_a1,
author = {A. Wakolbinger and V. A. Vatutin},
title = {Spatial branching populations with long individual lifetimes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {655--671},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a1/}
}
TY - JOUR AU - A. Wakolbinger AU - V. A. Vatutin TI - Spatial branching populations with long individual lifetimes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1998 SP - 655 EP - 671 VL - 43 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a1/ LA - ru ID - TVP_1998_43_4_a1 ER -
A. Wakolbinger; V. A. Vatutin. Spatial branching populations with long individual lifetimes. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 655-671. http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a1/