Minimaxity and equivariance in infinite dimension
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 3, pp. 540-560

Voir la notice de l'article provenant de la source Math-Net.Ru

In a location model on an infinite-dimensional Banach space, we study the problem of estimating the location parameter. This estimation problem exhibits an invariance structure where the group involved is the Banach space itself. Under suitable conditions it is shown that the minimax risk coincides with the minimum risk over all equivariant estimators, thus establishing the minimaxity of minimum risk equivariant estimators. Furthermore, such estimators are shown to be extended Bayes estimators, and least favorable sequences of prior distributions are derived. The proofs rely on a general result for structure models and a concentration condition for probability measures on a Banach space related to reproducing kernel Hilbert spaces of Gaussian measures.
Keywords: infinite-dimensional location model, structure model, equivariant estimator, minimax estimator, shift group.
@article{TVP_1998_43_3_a6,
     author = {H. Luschgy},
     title = {Minimaxity and equivariance in infinite dimension},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {540--560},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a6/}
}
TY  - JOUR
AU  - H. Luschgy
TI  - Minimaxity and equivariance in infinite dimension
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1998
SP  - 540
EP  - 560
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a6/
LA  - en
ID  - TVP_1998_43_3_a6
ER  - 
%0 Journal Article
%A H. Luschgy
%T Minimaxity and equivariance in infinite dimension
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1998
%P 540-560
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a6/
%G en
%F TVP_1998_43_3_a6
H. Luschgy. Minimaxity and equivariance in infinite dimension. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 3, pp. 540-560. http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a6/