Cramer large deviations when the extreme conjugate distribution is heavy-tailed
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 3, pp. 456-475

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical large deviations problem is considered under the assumption that the unilateral Cramer condition holds on a bounded interval. We assume that the extreme conjugate distribution is from the domain of attraction of a stable law. A limit is established up to which the asymptotic Cramer–Petrov representation is valid.
Keywords: conjugate distribution, slowly varying function, monotone $\varepsilon$-approximation.
@article{TVP_1998_43_3_a2,
     author = {A. V. Nagaev},
     title = {Cramer large deviations when the extreme conjugate distribution is heavy-tailed},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {456--475},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a2/}
}
TY  - JOUR
AU  - A. V. Nagaev
TI  - Cramer large deviations when the extreme conjugate distribution is heavy-tailed
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1998
SP  - 456
EP  - 475
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a2/
LA  - ru
ID  - TVP_1998_43_3_a2
ER  - 
%0 Journal Article
%A A. V. Nagaev
%T Cramer large deviations when the extreme conjugate distribution is heavy-tailed
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1998
%P 456-475
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a2/
%G ru
%F TVP_1998_43_3_a2
A. V. Nagaev. Cramer large deviations when the extreme conjugate distribution is heavy-tailed. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 3, pp. 456-475. http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a2/