Cramer large deviations when the extreme conjugate distribution is heavy-tailed
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 3, pp. 456-475
Cet article a éte moissonné depuis la source Math-Net.Ru
The classical large deviations problem is considered under the assumption that the unilateral Cramer condition holds on a bounded interval. We assume that the extreme conjugate distribution is from the domain of attraction of a stable law. A limit is established up to which the asymptotic Cramer–Petrov representation is valid.
Keywords:
conjugate distribution, slowly varying function, monotone $\varepsilon$-approximation.
@article{TVP_1998_43_3_a2,
author = {A. V. Nagaev},
title = {Cramer large deviations when the extreme conjugate distribution is heavy-tailed},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {456--475},
year = {1998},
volume = {43},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a2/}
}
A. V. Nagaev. Cramer large deviations when the extreme conjugate distribution is heavy-tailed. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 3, pp. 456-475. http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a2/