An entropy estimator for a~class of infinite alphabet processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 3, pp. 610-621
Voir la notice de l'article provenant de la source Math-Net.Ru
Motivated by recent work by Kontoyiannis and Suhov, and by Shields, we present an entropy estimator which works for a class of ergodic finite entropy infinite symbol processes for which the entropy of the time-zero partition is finite, and which satisfy a “Doeblin condition”. The results are then extended to random fields indexed by $\mathbb{Z}^d$.
Keywords:
entropy estimator, prefixes.
@article{TVP_1998_43_3_a12,
author = {A. N. Quas},
title = {An entropy estimator for a~class of infinite alphabet processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {610--621},
publisher = {mathdoc},
volume = {43},
number = {3},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a12/}
}
A. N. Quas. An entropy estimator for a~class of infinite alphabet processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 3, pp. 610-621. http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a12/