An entropy estimator for a~class of infinite alphabet processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 3, pp. 610-621

Voir la notice de l'article provenant de la source Math-Net.Ru

Motivated by recent work by Kontoyiannis and Suhov, and by Shields, we present an entropy estimator which works for a class of ergodic finite entropy infinite symbol processes for which the entropy of the time-zero partition is finite, and which satisfy a “Doeblin condition”. The results are then extended to random fields indexed by $\mathbb{Z}^d$.
Keywords: entropy estimator, prefixes.
@article{TVP_1998_43_3_a12,
     author = {A. N. Quas},
     title = {An entropy estimator for a~class of infinite alphabet processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {610--621},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a12/}
}
TY  - JOUR
AU  - A. N. Quas
TI  - An entropy estimator for a~class of infinite alphabet processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1998
SP  - 610
EP  - 621
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a12/
LA  - en
ID  - TVP_1998_43_3_a12
ER  - 
%0 Journal Article
%A A. N. Quas
%T An entropy estimator for a~class of infinite alphabet processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1998
%P 610-621
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a12/
%G en
%F TVP_1998_43_3_a12
A. N. Quas. An entropy estimator for a~class of infinite alphabet processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 3, pp. 610-621. http://geodesic.mathdoc.fr/item/TVP_1998_43_3_a12/