On a~functional version of the convergence of a~quadratic form in independent martingales to a~$\chi^2$ distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 1, pp. 82-96

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(a_{ij})_{i,j\ge 1}$ be an infinite matrix of real numbers such that $a_{ii}=0$, $i\ge 1$ and let $(X^i)_{i\ge 1}$ be a sequence of independent martingales such that $\sup_{i\ge1}\mathsf{E}[(X_1^i)^4]\infty$ and for each $i\ge 1$ the predictable compensator of the quadratic variation of $X^i$ is the identity function. If for each $n\ge 1$, $\sigma_n^2=\sum^n_{i,j=1}a^2_{ij}$ we give a necessary and sufficient condition so that the process defined for each $n\ge 1$ and $t\ge 1$, by $\sigma_n^{-1}\sum_{i$ converges in law to $((2\sqrt{p})^{-1}\sum_{i=1}^p((B_t^i)^2-t))_{t\le1}$, where $p\ge 1$ and $B^1,\dots,B^p$ are $p$ independent standard Brownian motions. We then study the case where $(X^i)_{i\ge 1}$ is a sequence of independent solutions to the ‘`Structure Equation.’
Keywords: quadratic forms, $\chi^2$ distributions, functional limit theorems, stochastic calculus, Brownian motion.
Mots-clés : martingales
@article{TVP_1998_43_1_a5,
     author = {B. Cadre},
     title = {On a~functional version of the convergence of a~quadratic form in independent martingales to a~$\chi^2$ distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {82--96},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a5/}
}
TY  - JOUR
AU  - B. Cadre
TI  - On a~functional version of the convergence of a~quadratic form in independent martingales to a~$\chi^2$ distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1998
SP  - 82
EP  - 96
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a5/
LA  - en
ID  - TVP_1998_43_1_a5
ER  - 
%0 Journal Article
%A B. Cadre
%T On a~functional version of the convergence of a~quadratic form in independent martingales to a~$\chi^2$ distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1998
%P 82-96
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a5/
%G en
%F TVP_1998_43_1_a5
B. Cadre. On a~functional version of the convergence of a~quadratic form in independent martingales to a~$\chi^2$ distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 1, pp. 82-96. http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a5/