On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 1, pp. 171-179

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a lower bound of the rate of convergence in the central limit theorem for real $m$-dependent random fields under the finiteness of the fifth absolute moments of summands.
Keywords: central limit theorem, lower bound, $m$-dependent random field.
Mots-clés : convergence rate
@article{TVP_1998_43_1_a13,
     author = {J. Sunklodas},
     title = {On the probability of the existenceof a localized basic state for a discrete {Schr\"odinger} equation with random potential, perturbed by a compact operator},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {171--179},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a13/}
}
TY  - JOUR
AU  - J. Sunklodas
TI  - On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1998
SP  - 171
EP  - 179
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a13/
LA  - ru
ID  - TVP_1998_43_1_a13
ER  - 
%0 Journal Article
%A J. Sunklodas
%T On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1998
%P 171-179
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a13/
%G ru
%F TVP_1998_43_1_a13
J. Sunklodas. On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 1, pp. 171-179. http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a13/