On the absolute significance test for~polynomial distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 4, pp. 731-746

Voir la notice de l'article provenant de la source Math-Net.Ru

Upper estimates are found for the sum of probabilities of all the events $(x_1\ldots x_r)$, where $x_k$ is the frequency of the $k$th outcome in $n$ independent trials carried out according to a polynomial scheme of trials with $r$ possible outcomes, the probability of each of which does not exceed the probability of a fixed event observed in $n$ independent trials carried out according to the same scheme. Using these estimates we construct a test rejecting a polynomial scheme when the probabilities of outcomes in it are known.
Keywords: polynomial scheme of trials, absolute significance test, Kullback–Leibler distance, consistency of a test under a simple alternative, convex programming.
@article{TVP_1997_42_4_a4,
     author = {N. P. Salikhov},
     title = {On the absolute significance test for~polynomial distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {731--746},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a4/}
}
TY  - JOUR
AU  - N. P. Salikhov
TI  - On the absolute significance test for~polynomial distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1997
SP  - 731
EP  - 746
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a4/
LA  - ru
ID  - TVP_1997_42_4_a4
ER  - 
%0 Journal Article
%A N. P. Salikhov
%T On the absolute significance test for~polynomial distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1997
%P 731-746
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a4/
%G ru
%F TVP_1997_42_4_a4
N. P. Salikhov. On the absolute significance test for~polynomial distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 4, pp. 731-746. http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a4/