Some refinements of probabilistic and moment inequalities
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 4, pp. 832-838
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The probabilistic inequality established for sums of independent random variables refines one of the estimates given in the paper by D. H. Fuk and S. V. Nagaev, [Theory Probab. Appl., 16 (1971), pp. 660–675. This inequality entails, in particular, the recent results of I. Pinelis, [Ann. Probab., 7 (1979), pp. 745–789, on estimation of constants in the Rosenthal inequality.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Euler function, Rosenthal inequality, Chebysh evinequality, absolute moments.
Mots-clés : absolute constants
                    
                  
                
                
                Mots-clés : absolute constants
@article{TVP_1997_42_4_a14,
     author = {S. V. Nagaev},
     title = {Some refinements of probabilistic and moment inequalities},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {832--838},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a14/}
}
                      
                      
                    S. V. Nagaev. Some refinements of probabilistic and moment inequalities. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 4, pp. 832-838. http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a14/
