On the existence of strong solutions of linear stochastic differential equations in $\mathbb{R}^\infty$
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 4, pp. 826-831
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work we prove the existence of a strong solution of a linear stochastic differential equation in $\mathbb R^\infty$. We use an infinite-dimensional modification of the method of successive approximations to find a solution to systems of a special form as well as an analogue of the Jordan method of reducing a matrix to a block form. The nonuniqueness of the constructed solution is shown.
@article{TVP_1997_42_4_a13,
author = {Yu. V. Mednitskii},
title = {On the existence of strong solutions of linear stochastic differential equations in $\mathbb{R}^\infty$},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {826--831},
year = {1997},
volume = {42},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a13/}
}
TY - JOUR
AU - Yu. V. Mednitskii
TI - On the existence of strong solutions of linear stochastic differential equations in $\mathbb{R}^\infty$
JO - Teoriâ veroâtnostej i ee primeneniâ
PY - 1997
SP - 826
EP - 831
VL - 42
IS - 4
UR - http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a13/
LA - ru
ID - TVP_1997_42_4_a13
ER -
Yu. V. Mednitskii. On the existence of strong solutions of linear stochastic differential equations in $\mathbb{R}^\infty$. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 4, pp. 826-831. http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a13/