Strong laws for~sums of~extreme values
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 553-563
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We present a new approach to strong laws for sums of extreme values of sequences of independent not necessarily identically distributed random variables. Our technique is based on a simple extension of an inequality of M. Marcus and G. Pisier [M. Marcus and G. Pisier, Acta Math., 152 (1984), pp. 245–301.] on the tail distribution of weak $l_p$ norms of independent sequences of real random variables. Our results are also related to some extensions of the Marcinkiewicz–Zygmund law of large numbers.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
order statistics, extreme values, laws of largenumbers, Marcinkiewicz–Zygmund law of large numbers, Banach spaces.
                    
                    
                    
                  
                
                
                @article{TVP_1997_42_3_a6,
     author = {M. Broniatowski and M. Weber},
     title = {Strong laws for~sums of~extreme values},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {553--563},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a6/}
}
                      
                      
                    M. Broniatowski; M. Weber. Strong laws for~sums of~extreme values. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 553-563. http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a6/
