Probabilities of large deviations for sums of independent random variables with a common distribution function from the domain of attraction of an asymmetric stable law
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 496-530
Cet article a éte moissonné depuis la source Math-Net.Ru
Consider a sequence of independent random variables $\{X_i\}$ with a common distribution function $V(x)$ from the domain of attraction of a stable law with an index $\alpha\in(1,2)$ and suppose that $\mathsf{E}X_1=0$ and $$ 0<\liminf_{x\to\infty}\frac{1-V(x)}{V(-x)}e^{g(x)}\le\limsup_{x\to\infty}\frac{1-V(x)}{V(-x)}e^{g(x)}<\infty, $$ where the positive function $g(x)$ tends to infinity and $$ g(x)x^{-\delta} \text{ increases for} x>x_0 \text{ increases for} \delta<1. $$ The paper obtains an asymptotical representation for the probability $\mathsf{P}\{X_1+\dots+X_n>x\}$, which is true uniformly with respect to all positive $x$ for $n$ tending to infinity. The case $\alpha=2$ was earlier carefully investigated in [10].
Keywords:
sums of independent random variables, large deviations
Mots-clés : stable distribution, domain of attraction.
Mots-clés : stable distribution, domain of attraction.
@article{TVP_1997_42_3_a4,
author = {L. V. Rozovskii},
title = {Probabilities of~large deviations for sums of~independent random variables with a~common distribution function from the~domain of~attraction of~an~asymmetric stable law},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {496--530},
year = {1997},
volume = {42},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a4/}
}
TY - JOUR AU - L. V. Rozovskii TI - Probabilities of large deviations for sums of independent random variables with a common distribution function from the domain of attraction of an asymmetric stable law JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1997 SP - 496 EP - 530 VL - 42 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a4/ LA - ru ID - TVP_1997_42_3_a4 ER -
%0 Journal Article %A L. V. Rozovskii %T Probabilities of large deviations for sums of independent random variables with a common distribution function from the domain of attraction of an asymmetric stable law %J Teoriâ veroâtnostej i ee primeneniâ %D 1997 %P 496-530 %V 42 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a4/ %G ru %F TVP_1997_42_3_a4
L. V. Rozovskii. Probabilities of large deviations for sums of independent random variables with a common distribution function from the domain of attraction of an asymmetric stable law. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 496-530. http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a4/