Asymptotics of~the~generalized renewal functions when the~variance is~finite
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 632-637

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior, as $t \to\infty$, of the generalized renewal functions $$ \Phi_n(t)=\sum_{k=0}^\infty\frac{n\cdot(n+k-1)!}{k!}\mathsf{P}\{S_k\le t\}, $$ where $n>0$ is an integer and $S_{k}$ are partial sums of a sequence of independent identically distributed random variables with positive mean and finite variance.
Keywords: generalized renewal functions, higher renewal moments, random walk, ladder epochs.
@article{TVP_1997_42_3_a15,
     author = {M. S. Sgibnev},
     title = {Asymptotics of~the~generalized renewal functions when the~variance is~finite},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {632--637},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a15/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - Asymptotics of~the~generalized renewal functions when the~variance is~finite
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1997
SP  - 632
EP  - 637
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a15/
LA  - ru
ID  - TVP_1997_42_3_a15
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T Asymptotics of~the~generalized renewal functions when the~variance is~finite
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1997
%P 632-637
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a15/
%G ru
%F TVP_1997_42_3_a15
M. S. Sgibnev. Asymptotics of~the~generalized renewal functions when the~variance is~finite. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 632-637. http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a15/