Haar systems and~some results on~the~basis in~a~martingale space with mixed norm
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 623-626
Voir la notice de l'article provenant de la source Math-Net.Ru
For martingale spaces with mixed norm defined with respect to diadic flow of $\sigma$-algebras, we find a condition on summation characteristics, which implies no unconditional basis in these spaces (a generalization of the classical result of Pelczynski proved for $L_1$-spaces). In these spaces (under other conditions on characteristics) generalized Haar systems are considered; the test of the existence of an unconditional basis in terms of the Paley function is obtained and the convergence theorem for almost all choices of signs is proved.
Mots-clés :
martingale
Keywords: mixed norm, diadic flow, Haar system, unconditional basis.
Keywords: mixed norm, diadic flow, Haar system, unconditional basis.
@article{TVP_1997_42_3_a13,
author = {I. V. Pavlov},
title = {Haar systems and~some results on~the~basis in~a~martingale space with mixed norm},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {623--626},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a13/}
}
TY - JOUR AU - I. V. Pavlov TI - Haar systems and~some results on~the~basis in~a~martingale space with mixed norm JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1997 SP - 623 EP - 626 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a13/ LA - ru ID - TVP_1997_42_3_a13 ER -
I. V. Pavlov. Haar systems and~some results on~the~basis in~a~martingale space with mixed norm. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 623-626. http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a13/