On the longest head-run in an~individual random sequence
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 608-615
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the framework of the Kolmogorov approach to verifying the theory of probability an analysis of a result of S. S. Samarova on the length of the longest head-run for the Markov chain with two states is given. This result is a refinement and generalization of P. Erdös and P. Revesz's corresponding results. An analogous assertion is formulated and proved for individual random sequences. A complexity characterization of its application is also given.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
laws of large numbers, length of runs, individual random sequence, Kolmogorov complexity.
Mots-clés : Markov chain
                    
                  
                
                
                Mots-clés : Markov chain
@article{TVP_1997_42_3_a11,
     author = {V. V. V'yugin},
     title = {On the longest head-run in an~individual random sequence},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {608--615},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a11/}
}
                      
                      
                    V. V. V'yugin. On the longest head-run in an~individual random sequence. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 608-615. http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a11/
