On the longest head-run in an~individual random sequence
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 608-615

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the Kolmogorov approach to verifying the theory of probability an analysis of a result of S. S. Samarova on the length of the longest head-run for the Markov chain with two states is given. This result is a refinement and generalization of P. Erdös and P. Revesz's corresponding results. An analogous assertion is formulated and proved for individual random sequences. A complexity characterization of its application is also given.
Keywords: laws of large numbers, length of runs, individual random sequence, Kolmogorov complexity.
Mots-clés : Markov chain
@article{TVP_1997_42_3_a11,
     author = {V. V. V'yugin},
     title = {On the longest head-run in an~individual random sequence},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {608--615},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a11/}
}
TY  - JOUR
AU  - V. V. V'yugin
TI  - On the longest head-run in an~individual random sequence
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1997
SP  - 608
EP  - 615
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a11/
LA  - ru
ID  - TVP_1997_42_3_a11
ER  - 
%0 Journal Article
%A V. V. V'yugin
%T On the longest head-run in an~individual random sequence
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1997
%P 608-615
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a11/
%G ru
%F TVP_1997_42_3_a11
V. V. V'yugin. On the longest head-run in an~individual random sequence. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 608-615. http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a11/