Large deviations of random variables with a finite number of approximately evaluated cumulants
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 603-608
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper establishes a theorem on exact asymptotics of probabilities of large deviations for random variables with known estimates for only a finite number of cumulants, the latter being subject to conditions of simultaneous growth. For instance, let $S_n$ be a sequence of real random variables and assume the existence of a sequence of small in a sense random variables $G_n(\xi)$ depending on $\xi$ analytically and such that $$ \mathsf{E}\exp(\xi S_n+G_n(\xi))=\exp\sum_{j=2}^m\frac{\Gamma_{nj}}{j!}\xi^j. $$ If all the cumulants $\Gamma_{nj}$ have order $n$ and the order of $G_n(\xi)$ does not exceed $n\xi^{m+1}$, then the Cramér type probabilities of large deviations can be indicated for $S_n$.
Mots-clés :
random variables, cumulant
Keywords: distribution function, large deviations, Cramer asymptotics.
Keywords: distribution function, large deviations, Cramer asymptotics.
@article{TVP_1997_42_3_a10,
author = {V. I. Bakhtin},
title = {Large deviations of random variables with a finite number of approximately evaluated cumulants},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {603--608},
year = {1997},
volume = {42},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a10/}
}
TY - JOUR AU - V. I. Bakhtin TI - Large deviations of random variables with a finite number of approximately evaluated cumulants JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1997 SP - 603 EP - 608 VL - 42 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a10/ LA - ru ID - TVP_1997_42_3_a10 ER -
V. I. Bakhtin. Large deviations of random variables with a finite number of approximately evaluated cumulants. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 3, pp. 603-608. http://geodesic.mathdoc.fr/item/TVP_1997_42_3_a10/