Estimates of the distribution of the maximum of a random field
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 350-358 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $ \xi(t) $ be a random field with values in $ \mathbb R^1$, defined for $ t \in T$, $T$ an arbitrary set. In this paper two-sided exponential estimates are derived for probabilities $ P(T,u) = \mathbb P\{\sup_{t \in T} \xi(t) > u \} $: $$ C_1 g_2(u) \l \log P(T,u) + g_1(u) \l C_2 g_2(u), $$ where $ g_1(u) $ is a convex function, $u \to \infty \Rightarrow \lim g_1'(u) = \infty$, $\lim [g_2(u)/g_1(u)] = 0$, $C_k$ are positive numbers independent of $u$.
Keywords: entropy, spaces $ B(\varphi)$, entropy germcapacity, exponential estimate.
@article{TVP_1997_42_2_a8,
     author = {E. I. Ostrovskii},
     title = {Estimates of the distribution of the maximum of a~random field},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {350--358},
     year = {1997},
     volume = {42},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a8/}
}
TY  - JOUR
AU  - E. I. Ostrovskii
TI  - Estimates of the distribution of the maximum of a random field
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1997
SP  - 350
EP  - 358
VL  - 42
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a8/
LA  - ru
ID  - TVP_1997_42_2_a8
ER  - 
%0 Journal Article
%A E. I. Ostrovskii
%T Estimates of the distribution of the maximum of a random field
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1997
%P 350-358
%V 42
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a8/
%G ru
%F TVP_1997_42_2_a8
E. I. Ostrovskii. Estimates of the distribution of the maximum of a random field. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 350-358. http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a8/