On an exact constant for the Rosenthal inequality
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 341-350

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\dots,\xi_n$ be independent random variables having symmetric distribution with finite $p$th moment, $2$. It is shown that the precise constant $C^*_p$ in Rosenthal's inequality $$ \biggl\|\sum_{i=1}^n\xi_i\biggr\|\le C_p\max\biggl(\biggl\|\sum_{i=1}^n\xi_i\biggr\|_2,\biggl(\sum_{i=1}^n\|\xi_i\|_p^p\biggr)^{1/p}\biggr) $$ has the form \begin{align*} C_p^*=\biggl(1+\frac{2^{p/1}}{\pi^{1/2}}\Gamma\biggl(\frac{p+1}2\biggr)\biggr)^{1/p}, \qquad 2

4, C_p^*=\|\xi_1-\xi_2\|_p, \qquad p\ge4, \end{align*} where $\Gamma(\alpha)=\int_0^\infty x^{\alpha-1}e^{-x} dx$, and $\xi_1$, $\xi_2$ are independent Poisson random variables with parameter 0.5. It is proved also that $$ \lim_{p\to\infty}C_p^*\frac{\ln p}p=\frac1e. $$ .
Keywords: Rosenthal's inequality, random variables withsymmetric distribution
Mots-clés : Poisson random variable, moment.
@article{TVP_1997_42_2_a7,
     author = {R. Ibragimov and Sh. Sharahmetov},
     title = {On an exact constant for the {Rosenthal} inequality},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {341--350},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a7/}
}
TY  - JOUR
AU  - R. Ibragimov
AU  - Sh. Sharahmetov
TI  - On an exact constant for the Rosenthal inequality
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1997
SP  - 341
EP  - 350
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a7/
LA  - ru
ID  - TVP_1997_42_2_a7
ER  - 
%0 Journal Article
%A R. Ibragimov
%A Sh. Sharahmetov
%T On an exact constant for the Rosenthal inequality
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1997
%P 341-350
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a7/
%G ru
%F TVP_1997_42_2_a7
R. Ibragimov; Sh. Sharahmetov. On an exact constant for the Rosenthal inequality. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 341-350. http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a7/