Approximation of quadratic forms of independent random vectors by accompanying laws
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 308-335

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X, X_1,X_2,\dots$ be independent and identically distributed random vectors taking values in $\mathbb{R}^d$. Assume that $\mathsf{E}X=0$, $\mathsf{E}|X|^{8/3}\infty$ and that $X$ is not concentrated in a proper subspace of $\mathbb{R}^d$. Let $Y,Y_1,Y_2,\dots$ denote i.i.d. random vectors with common distribution which is accompanying to that of $X$. We compare the distributions of the nondegenerate quadratic forms $Q[S_N]$ and $Q[T_N]$ of the normalized sums $S_N=N^{-1/2}(X_1+\dots+X_N)$ and $T_N=N^{-1/2}(Y_1+\dots+Y_N)$ and prove that \begin{align*} \sup_x|\mathsf{P}\{Q[S_N-a]\}-\mathsf{P}\{Q[T_N-a]\}| \qquad=O((1+|a|^4)N^{-1}), \qquad a\in\mathbb{R}^d, \end{align*} provided that $9\le d\le\infty$. The constant in this bound depends on $\mathsf{E}|X|^{8/3}$, $Q$, and the covariance operator of $X$. We also show the optimality of the bound $O(N^{-1})$.
Keywords: compound Poisson approximation, accompanying laws, Hilbert spaces, quadratic forms, ellipsoids, hyperboloids.
Mots-clés : convergence rates, multidimensional spaces
@article{TVP_1997_42_2_a5,
     author = {V. Bentkus and F. G\"otze and A. Yu. Zaitsev},
     title = {Approximation of quadratic forms of independent random vectors by accompanying laws},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {308--335},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a5/}
}
TY  - JOUR
AU  - V. Bentkus
AU  - F. Götze
AU  - A. Yu. Zaitsev
TI  - Approximation of quadratic forms of independent random vectors by accompanying laws
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1997
SP  - 308
EP  - 335
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a5/
LA  - en
ID  - TVP_1997_42_2_a5
ER  - 
%0 Journal Article
%A V. Bentkus
%A F. Götze
%A A. Yu. Zaitsev
%T Approximation of quadratic forms of independent random vectors by accompanying laws
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1997
%P 308-335
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a5/
%G en
%F TVP_1997_42_2_a5
V. Bentkus; F. Götze; A. Yu. Zaitsev. Approximation of quadratic forms of independent random vectors by accompanying laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 308-335. http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a5/