Approximation of quadratic forms of independent random vectors by accompanying laws
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 308-335
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X, X_1,X_2,\dots$ be independent and identically distributed random vectors taking values in $\mathbb{R}^d$. Assume that $\mathsf{E}X=0$, $\mathsf{E}|X|^{8/3}\infty$ and that $X$ is not concentrated in a proper subspace of $\mathbb{R}^d$. Let $Y,Y_1,Y_2,\dots$ denote i.i.d. random vectors with common distribution which is accompanying to that of $X$. We compare the distributions of the nondegenerate quadratic forms $Q[S_N]$ and $Q[T_N]$ of the normalized sums $S_N=N^{-1/2}(X_1+\dots+X_N)$ and $T_N=N^{-1/2}(Y_1+\dots+Y_N)$ and prove that
\begin{align*} \sup_x|\mathsf{P}\{Q[S_N-a]\}-\mathsf{P}\{Q[T_N-a]\}|
\qquad=O((1+|a|^4)N^{-1}), \qquad a\in\mathbb{R}^d,
\end{align*}
provided that $9\le d\le\infty$. The constant in this bound depends on $\mathsf{E}|X|^{8/3}$, $Q$, and the covariance operator of $X$. We also show the optimality of the bound $O(N^{-1})$.
Keywords:
compound Poisson approximation, accompanying laws, Hilbert spaces, quadratic forms, ellipsoids, hyperboloids.
Mots-clés : convergence rates, multidimensional spaces
Mots-clés : convergence rates, multidimensional spaces
@article{TVP_1997_42_2_a5,
author = {V. Bentkus and F. G\"otze and A. Yu. Zaitsev},
title = {Approximation of quadratic forms of independent random vectors by accompanying laws},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {308--335},
publisher = {mathdoc},
volume = {42},
number = {2},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a5/}
}
TY - JOUR AU - V. Bentkus AU - F. Götze AU - A. Yu. Zaitsev TI - Approximation of quadratic forms of independent random vectors by accompanying laws JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1997 SP - 308 EP - 335 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a5/ LA - en ID - TVP_1997_42_2_a5 ER -
%0 Journal Article %A V. Bentkus %A F. Götze %A A. Yu. Zaitsev %T Approximation of quadratic forms of independent random vectors by accompanying laws %J Teoriâ veroâtnostej i ee primeneniâ %D 1997 %P 308-335 %V 42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a5/ %G en %F TVP_1997_42_2_a5
V. Bentkus; F. Götze; A. Yu. Zaitsev. Approximation of quadratic forms of independent random vectors by accompanying laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 308-335. http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a5/