Regular Gaussian random operators and Strook--Varadhan theorem for symmetric stochastic Fredholm-type equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 262-273

Voir la notice de l'article provenant de la source Math-Net.Ru

Regular Gaussian functionals are introduced and studied; the results obtained are applied to the investigation of properties of the distribution of solutions of equations with Gaussian random operators. In particular, an analogue of the Strook–Varadhan theorem for linear stochastic Fredholm-type integral equations is proved.
Keywords: Gaussian white noise, regular random element, strong random operator, topological support of a measure.
@article{TVP_1997_42_2_a2,
     author = {A. M. Kulik},
     title = {Regular {Gaussian} random operators and {Strook--Varadhan} theorem for symmetric stochastic {Fredholm-type} equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {262--273},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a2/}
}
TY  - JOUR
AU  - A. M. Kulik
TI  - Regular Gaussian random operators and Strook--Varadhan theorem for symmetric stochastic Fredholm-type equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1997
SP  - 262
EP  - 273
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a2/
LA  - ru
ID  - TVP_1997_42_2_a2
ER  - 
%0 Journal Article
%A A. M. Kulik
%T Regular Gaussian random operators and Strook--Varadhan theorem for symmetric stochastic Fredholm-type equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1997
%P 262-273
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a2/
%G ru
%F TVP_1997_42_2_a2
A. M. Kulik. Regular Gaussian random operators and Strook--Varadhan theorem for symmetric stochastic Fredholm-type equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 262-273. http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a2/