On the Kolmogorov–Hajek–Rényi inequality for normed integrals of weakly dependent processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 225-238
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a process of the form $\zeta_\varepsilon(t)=\sqrt{\varepsilon}\int_0^{t/\varepsilon}\eta(s)\,ds$, $t\in [0,1]$, where $\eta(t)$, $t\ge0$, is a strictly stationary process with zero mean satisfying either the uniform strong mixing condition or the absolute regularity condition and find an estimate from below for the probability of the event that $|\zeta_{\varepsilon}(t)|$, $t\in [0,1]$, lies within a domain with growing curved boundaries.
Keywords:
uniformly strong mixing, absolute regularity, spiral, representation.
Mots-clés : martingale
Mots-clés : martingale
@article{TVP_1997_42_2_a0,
author = {B. V. Bondarev},
title = {On the {Kolmogorov{\textendash}Hajek{\textendash}R\'enyi} inequality for normed integrals of weakly dependent processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {225--238},
year = {1997},
volume = {42},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a0/}
}
TY - JOUR AU - B. V. Bondarev TI - On the Kolmogorov–Hajek–Rényi inequality for normed integrals of weakly dependent processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1997 SP - 225 EP - 238 VL - 42 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a0/ LA - ru ID - TVP_1997_42_2_a0 ER -
B. V. Bondarev. On the Kolmogorov–Hajek–Rényi inequality for normed integrals of weakly dependent processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 225-238. http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a0/