On the Kolmogorov--Hajek--R\'enyi inequality for normed integrals of weakly dependent processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 225-238

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a process of the form $\zeta_\varepsilon(t)=\sqrt{\varepsilon}\int_0^{t/\varepsilon}\eta(s)\,ds$, $t\in [0,1]$, where $\eta(t)$, $t\ge0$, is a strictly stationary process with zero mean satisfying either the uniform strong mixing condition or the absolute regularity condition and find an estimate from below for the probability of the event that $|\zeta_{\varepsilon}(t)|$, $t\in [0,1]$, lies within a domain with growing curved boundaries.
Keywords: uniformly strong mixing, absolute regularity, spiral, representation.
Mots-clés : martingale
@article{TVP_1997_42_2_a0,
     author = {B. V. Bondarev},
     title = {On the {Kolmogorov--Hajek--R\'enyi} inequality for normed integrals of weakly dependent processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {225--238},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a0/}
}
TY  - JOUR
AU  - B. V. Bondarev
TI  - On the Kolmogorov--Hajek--R\'enyi inequality for normed integrals of weakly dependent processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1997
SP  - 225
EP  - 238
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a0/
LA  - ru
ID  - TVP_1997_42_2_a0
ER  - 
%0 Journal Article
%A B. V. Bondarev
%T On the Kolmogorov--Hajek--R\'enyi inequality for normed integrals of weakly dependent processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1997
%P 225-238
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a0/
%G ru
%F TVP_1997_42_2_a0
B. V. Bondarev. On the Kolmogorov--Hajek--R\'enyi inequality for normed integrals of weakly dependent processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 2, pp. 225-238. http://geodesic.mathdoc.fr/item/TVP_1997_42_2_a0/