A~refinement of the central limit theorem for random determinants
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 1, pp. 63-73

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proves the central limit theorem (the logarithmic law) for random determinants under weaker conditions than the author used earlier: if for any $n$ the random elements $\xi^{(n)}_{ij}$, $i,j=1,\dots,n$, of the matrix $\Xi=(\xi_{ij}/n)$ are independent, $\mathsf{E}\xi_{ij}^{(n)}=a$, $\operatorname{Var}\xi_{ij}^{(n)}=1$, and for some $\delta > 0$ $$ \sup_n\max_{i,j=1,\dots,n}\mathsf{E}|\xi_{ij}^{(n)}|^{4+\delta}\infty, $$ then \begin{align*} \lim_{n\to\infty}\biggl\{\frac{\log\det\Xi^2-\log(n-1)!\,-\log(1+na^2)}{\sqrt{2\log n}}\biggr\} \\ \qquad=\frac1{\sqrt{2\pi}}\int_{-\infty}^x\exp\biggl(-\frac{u^2}2\biggr)\,du. \end{align*}
Keywords: logarithmic law, random determinants, method of perpendiculars, normal regularization (regularity).
@article{TVP_1997_42_1_a4,
     author = {V. L. Girko},
     title = {A~refinement of the central limit theorem for random determinants},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {63--73},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a4/}
}
TY  - JOUR
AU  - V. L. Girko
TI  - A~refinement of the central limit theorem for random determinants
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1997
SP  - 63
EP  - 73
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a4/
LA  - ru
ID  - TVP_1997_42_1_a4
ER  - 
%0 Journal Article
%A V. L. Girko
%T A~refinement of the central limit theorem for random determinants
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1997
%P 63-73
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a4/
%G ru
%F TVP_1997_42_1_a4
V. L. Girko. A~refinement of the central limit theorem for random determinants. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 1, pp. 63-73. http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a4/