On smooth behavior of probability distributions under polynomial mappings
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 1, pp. 51-62
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X$ be a random variable with probability distribution $PX$ concentrated on $[-1,1]$ and let $Q(x)$ be a polynomial of degree $k\ge 2$. The characteristic function of a random variable $Y=Q(X)$ is of order $O(1/|t|1/k)$ as $|t|\to\infty$ if $PX$ is sufficiently smooth. In addition, for every $1/k>\varepsilon>0$ there exists a singular distribution $PX$ such that every convolution $P^{n\star}_X$ is also singular while the characteristic function of $Y$ is of order $O(1/|t|^{1/k-\varepsilon})$. While the characteristic function of $X$ is small when “averaged” the characteristic function of the polynomial transformation $Y$ of $X$ is uniformly small.
Keywords:
characteristic functions, singular distributions, Cantor distribution
Mots-clés : polynomials on random variables.
Mots-clés : polynomials on random variables.
@article{TVP_1997_42_1_a3,
author = {F. G\"otze and Yu. V. Prokhorov and V. V. Ulyanov},
title = {On smooth behavior of probability distributions under polynomial mappings},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {51--62},
year = {1997},
volume = {42},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a3/}
}
TY - JOUR AU - F. Götze AU - Yu. V. Prokhorov AU - V. V. Ulyanov TI - On smooth behavior of probability distributions under polynomial mappings JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1997 SP - 51 EP - 62 VL - 42 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a3/ LA - ru ID - TVP_1997_42_1_a3 ER -
F. Götze; Yu. V. Prokhorov; V. V. Ulyanov. On smooth behavior of probability distributions under polynomial mappings. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 1, pp. 51-62. http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a3/