Optimal bounds for the Prokhorov distance of the Miller--Sen process and Brownian motion
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 1, pp. 202-208
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider U-processes introduced by Miller and Sen. Exact rates of convergence to Brownian motion in the sense of Prokhorov's metric are established.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
nondegenerate $U$-processes, the Prokhorov-metric, partial sum process.
Mots-clés : Hoeffding-decomposition
                    
                  
                
                
                Mots-clés : Hoeffding-decomposition
@article{TVP_1997_42_1_a15,
     author = {D. Ferger},
     title = {Optimal bounds for the {Prokhorov} distance of the {Miller--Sen} process and {Brownian} motion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {202--208},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a15/}
}
                      
                      
                    TY - JOUR AU - D. Ferger TI - Optimal bounds for the Prokhorov distance of the Miller--Sen process and Brownian motion JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1997 SP - 202 EP - 208 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a15/ LA - en ID - TVP_1997_42_1_a15 ER -
D. Ferger. Optimal bounds for the Prokhorov distance of the Miller--Sen process and Brownian motion. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 1, pp. 202-208. http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a15/
