Maximum of the critical Galton–Watson processes and left-continuous random walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 1, pp. 21-34
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $Z(n)$, $n=0,1,\dots$ be a critical Galton–Watson branching process, $Z(0)=1$. Under mild conditions on the distribution of $Z(1)$, we prove that $$ \mathsf{E}\max_{1\le k\le n}Z(k)\sim\log n, \qquad n\to\infty. $$
Keywords:
critical branching process, maximum of a branching process, the von Bahr–Esseen inequality, left-continuous random walk.
@article{TVP_1997_42_1_a1,
author = {V. A. Vatutin and V. A. Topchii},
title = {Maximum of the critical {Galton{\textendash}Watson} processes and left-continuous random walks},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {21--34},
year = {1997},
volume = {42},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a1/}
}
TY - JOUR AU - V. A. Vatutin AU - V. A. Topchii TI - Maximum of the critical Galton–Watson processes and left-continuous random walks JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1997 SP - 21 EP - 34 VL - 42 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a1/ LA - ru ID - TVP_1997_42_1_a1 ER -
V. A. Vatutin; V. A. Topchii. Maximum of the critical Galton–Watson processes and left-continuous random walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 1, pp. 21-34. http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a1/