Asymptotic distributions of multivariate intermediate order statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 4, pp. 840-853
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{X_n=(X_n^{(1)},\ldots,X_n^{(d)}),n\ge 1\}$ be independent identically distributed random vectors with a common nondegenerate distribution function and for each $n\ge 1$ and each $k=1,\ldots,d$, denote $X_{1;n}^{(k)}\le\cdots\le X_{n;n}^{(k)}$ as the order statistics of $X_1^{(k)},\ldots,X_n^{(k)}$. Suppose that ranks $r_n=(r_n^{(1)},\ldots,r_n^{(d)})$ satisfy $r_n^{(k)} \to\infty$ nondecreasingly, $r_n^{(k)}/n\to 0$ and $r_n^{(k)}/\sum_{l=1}^d r_n^{(l)}\to m^{(k)}>0$ for each $k=1,\ldots,d$ and let $X_{r_n;n}= (X_{r_n^{(1)};n}^{(1)},\ldots,X_{r_n^{(d)};n}^{(d)})$. This paper is to find out the class of limiting distributions of $\{X_{r_n;n}\}$ after suitable normalizing and centering, and give necessary and sufficient conditions of weak convergence.
Keywords:
multivariate intermediate order statistics, asymptotic distributions.
@article{TVP_1996_41_4_a7,
author = {S. Cheng and L. de Haan and J. Yang},
title = {Asymptotic distributions of multivariate intermediate order statistics},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {840--853},
publisher = {mathdoc},
volume = {41},
number = {4},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a7/}
}
TY - JOUR AU - S. Cheng AU - L. de Haan AU - J. Yang TI - Asymptotic distributions of multivariate intermediate order statistics JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1996 SP - 840 EP - 853 VL - 41 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a7/ LA - en ID - TVP_1996_41_4_a7 ER -
S. Cheng; L. de Haan; J. Yang. Asymptotic distributions of multivariate intermediate order statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 4, pp. 840-853. http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a7/