Martingales, Tauberian theorem, and strategies of gambling
Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 4, pp. 810-826

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Tauberian theorem, we get an asymptotic relation between the tail of the distribution of the quadratic characteristic of a martingale and the expectation of its terminal value. In case of continuous martingales the following result is proven: if $\tau $ is a stopping time for a standard Wiener process Wt with integrable terminal value $W_\tau $, then \begin{equation} \liminf_{t\rightarrow \infty}(\mathbb P\{\tau >t\}\sqrt{t}) \ge \sqrt{\frac 2\pi }|\mathbb E W_\tau | . \end{equation} Using a related result for discrete time martingales, we study asymptotic characteristics of some strategies of gambling and, in particular, Oscar's strategy.
Keywords: optimal stopping, local martingales, Wald equation, uniform integrability, sharp inequalities, gambling strategies, boundary crossing problem.
@article{TVP_1996_41_4_a5,
     author = {A. A. Novikov},
     title = {Martingales, {Tauberian} theorem, and strategies of gambling},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {810--826},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a5/}
}
TY  - JOUR
AU  - A. A. Novikov
TI  - Martingales, Tauberian theorem, and strategies of gambling
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1996
SP  - 810
EP  - 826
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a5/
LA  - ru
ID  - TVP_1996_41_4_a5
ER  - 
%0 Journal Article
%A A. A. Novikov
%T Martingales, Tauberian theorem, and strategies of gambling
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1996
%P 810-826
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a5/
%G ru
%F TVP_1996_41_4_a5
A. A. Novikov. Martingales, Tauberian theorem, and strategies of gambling. Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 4, pp. 810-826. http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a5/