Asymptotic expansions for median estimate of a~parameter
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 4, pp. 738-754
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We obtain asymptotic expansions for the distribution of a median (of empirical distribution) estimate of a parameter in additive noise with symmetric density. For Laplacian (i.e., two-sided exponential) density this estimate coincides with the maximum likelihood estimate. As a corollary we obtain asymptotic expansions for moments of these estimates. Numerical comparisons with exact data show that the use of asymptotic expansions significantly increases the accuracy of statistical inferences even for relatively small sample sizes.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
median estimate, asymptotic expansions.
                    
                  
                
                
                @article{TVP_1996_41_4_a1,
     author = {M. V. Burnashev},
     title = {Asymptotic expansions for median estimate of a~parameter},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {738--754},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a1/}
}
                      
                      
                    M. V. Burnashev. Asymptotic expansions for median estimate of a~parameter. Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 4, pp. 738-754. http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a1/
