Ergodic properties of hyperbolic equations with mixing
Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 3, pp. 505-519
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper proves the ergodicity of the phase flow of the Cauchy problem for wave equations with respect to the limit measure for statistical solutions of this problem under a mixing condition for the initial measure.
Keywords:
Cauchy problem for the wave equation, statistical solutions, ergodicity of a flow.
@article{TVP_1996_41_3_a1,
author = {T. V. Dudnikova and A. I. Komech},
title = {Ergodic properties of hyperbolic equations with mixing},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {505--519},
publisher = {mathdoc},
volume = {41},
number = {3},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1996_41_3_a1/}
}
T. V. Dudnikova; A. I. Komech. Ergodic properties of hyperbolic equations with mixing. Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 3, pp. 505-519. http://geodesic.mathdoc.fr/item/TVP_1996_41_3_a1/