Ergodic properties of hyperbolic equations with mixing
Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 3, pp. 505-519 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper proves the ergodicity of the phase flow of the Cauchy problem for wave equations with respect to the limit measure for statistical solutions of this problem under a mixing condition for the initial measure.
Keywords: Cauchy problem for the wave equation, statistical solutions, ergodicity of a flow.
@article{TVP_1996_41_3_a1,
     author = {T. V. Dudnikova and A. I. Komech},
     title = {Ergodic properties of hyperbolic equations with mixing},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {505--519},
     year = {1996},
     volume = {41},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1996_41_3_a1/}
}
TY  - JOUR
AU  - T. V. Dudnikova
AU  - A. I. Komech
TI  - Ergodic properties of hyperbolic equations with mixing
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1996
SP  - 505
EP  - 519
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_1996_41_3_a1/
LA  - ru
ID  - TVP_1996_41_3_a1
ER  - 
%0 Journal Article
%A T. V. Dudnikova
%A A. I. Komech
%T Ergodic properties of hyperbolic equations with mixing
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1996
%P 505-519
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_1996_41_3_a1/
%G ru
%F TVP_1996_41_3_a1
T. V. Dudnikova; A. I. Komech. Ergodic properties of hyperbolic equations with mixing. Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 3, pp. 505-519. http://geodesic.mathdoc.fr/item/TVP_1996_41_3_a1/