Spectral criteria for existence of generalized ergodic transforms
Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 2, pp. 251-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions are studied for a.e. convergence of one-sided and two-sided ergodic transforms $$ \sum_1^\infty b_kT^kf(x) \text{ and } \sum_{-\infty}^\infty b_kT^kf(x), $$ where $T$ is a unitary operator in $L^2$. Criteria for existence of these transforms are obtained in terms of the properties of the operator spectral measure. Similar results are stated for normal operators and for stationary and harmonizable stochastic processes
Keywords: unitary operators, normal operators, stationary processes, harmonizable processes, spectral measure, ergodic transforms, convergence almost everywhere.
@article{TVP_1996_41_2_a1,
     author = {V. F. Gaposhkin},
     title = {Spectral criteria for~existence of~generalized ergodic transforms},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {251--271},
     year = {1996},
     volume = {41},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1996_41_2_a1/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - Spectral criteria for existence of generalized ergodic transforms
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1996
SP  - 251
EP  - 271
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1996_41_2_a1/
LA  - ru
ID  - TVP_1996_41_2_a1
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T Spectral criteria for existence of generalized ergodic transforms
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1996
%P 251-271
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1996_41_2_a1/
%G ru
%F TVP_1996_41_2_a1
V. F. Gaposhkin. Spectral criteria for existence of generalized ergodic transforms. Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 2, pp. 251-271. http://geodesic.mathdoc.fr/item/TVP_1996_41_2_a1/