Asymptotic properties of matrices related to mappings of~partitions
Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 2, pp. 241-250
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $S=(S_1,\dots,S_{\tau})$ be a partition of the set $\mathscr{N}=\{1,\dots,n\}$ into nonempty disjoint subsets, $\Phi$ a permutation on $\mathscr{N}$, and $\xi_{ij}=|\Phi S_i\cap S_j|$ the cardinality of the intersection of the sets $\Phi S_i$ and $S_j$. Assuming that $S$ is selected at random and equiprobably from the set of all the permutations satisfying the condition $|S_i|=s_i$, $i=1\ldots r$, and the permutation $\Phi$ (possibly random) satisfies some constrains, local and integral limit theorems are proved for the joint distribution of the random variables $\xi_{ij}$, $i,j=1\ldots r$, as $n\to\infty$ and $s_in^{-1}\to a_j\in(0,1)$.
Mots-clés :
partitions
Keywords: local limit theorem, integral limit theorem.
Keywords: local limit theorem, integral limit theorem.
@article{TVP_1996_41_2_a0,
author = {V. A. Vatutin and V. G. Mikhailov},
title = {Asymptotic properties of matrices related to mappings of~partitions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {241--250},
publisher = {mathdoc},
volume = {41},
number = {2},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1996_41_2_a0/}
}
TY - JOUR AU - V. A. Vatutin AU - V. G. Mikhailov TI - Asymptotic properties of matrices related to mappings of~partitions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1996 SP - 241 EP - 250 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1996_41_2_a0/ LA - ru ID - TVP_1996_41_2_a0 ER -
V. A. Vatutin; V. G. Mikhailov. Asymptotic properties of matrices related to mappings of~partitions. Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 2, pp. 241-250. http://geodesic.mathdoc.fr/item/TVP_1996_41_2_a0/