Behavior of random measures under filtration change
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 4, pp. 754-763
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the problem of the behavior of $L^p $-valued random measures in the sense of Bichteler and Jacod [Lecture Notes in Control Inform. Sci., 49 (1983), pp. 1–18] and stochastic integrals with respect to them under filtration change and thus give a complete proof of the main result announced by the author in [First World Congress of the Bernoulli Society of Mathematical Statistics and Probability Theory (Abstracts), Vol. II, Nauka, Moscow, 1986, p. 734].
Keywords:
$\sigma$-finite $L^p$-valued random measure
Mots-clés : its decomposition, its extension for enlargement of a filtration.
Mots-clés : its decomposition, its extension for enlargement of a filtration.
@article{TVP_1995_40_4_a3,
author = {V. A. Lebedev},
title = {Behavior of random measures under filtration change},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {754--763},
publisher = {mathdoc},
volume = {40},
number = {4},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a3/}
}
V. A. Lebedev. Behavior of random measures under filtration change. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 4, pp. 754-763. http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a3/